TY - JOUR
T1 - Mechanism of pyrolysis reaction of al-rich al/ptfe/tih2 active material
AU - Wang, Yilei
AU - Jiang, Chunlan
AU - Fang, Yuande
AU - Wang, Xinyu
AU - Wang, Zaicheng
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - In order to obtain the chemical reaction mechanism of Al-rich Al/PTFE/TiH2 composites in argon and oxygen atmosphere, Al/PTFE, PTFE/TiH2, Al/TiH2 and Al-rich Al/PTFE/TiH2 with different contents of TiH2 composites were prepared by using the wet mixing method. The pyrolysis behavior of the above composites was investigated by thermogravimetric differential scanning calorimeter (TG-DSC). In addition, the calorific value of the above composite was measured by an oxygen bomb calorimeter. The compositions of TG-DSC residues at different peak temperatures and 1000 °C and the residues of oxygen bomb experiment were analyzed by X-ray diffraction (XRD), The results show that the pyrolytic products of Al-rich Al/PTFE/TiH2 materials under argon atmosphere can be divided into four stages. In the first stage (328.6–378.6 °C), the products are TiH1.924, (C2F4)n, (CF2)n, H2(g), Al and TiH2; in the second stage (510.8–534.3 °C), the products are Al, TiH1.924, (C2F4)n, (CF2)n, Ti, AlF3, TiF3, TiF4(g), C and H2(g). In the third stage (540.8–618.1 °C), the products are Al, C, Ti, (C2F4)n, (CF2)n, AlF3, TiF3, TiF4, CF4(g), C3F6(g), C4F8(g), C2F6(g), Al5Ti2 and H2(g); in the fourth stage (918.5–1000 °C), the products are AlCTi2, Al2Ti, AlTi, TiC, AlF3, Al, TiF3, TiC0.957, TiC0.981 and TiC0.95. The calorific value of the combustion of Al-rich Al/PTFE/TiH2 composite with 10% the content of TiH2 is the highest and is 19,899 J/g, which is 3.776% higher than that of Al-rich Al/PTFE composite. When TiH2 content is greater than zero and not more than 10%, the chemical reaction mechanism of Al-rich Al/PTFE/TiH2 is almost the same under oxygen atmosphere. When the content of TiH2 is higher than 10%, the mechanism of this material is different.
AB - In order to obtain the chemical reaction mechanism of Al-rich Al/PTFE/TiH2 composites in argon and oxygen atmosphere, Al/PTFE, PTFE/TiH2, Al/TiH2 and Al-rich Al/PTFE/TiH2 with different contents of TiH2 composites were prepared by using the wet mixing method. The pyrolysis behavior of the above composites was investigated by thermogravimetric differential scanning calorimeter (TG-DSC). In addition, the calorific value of the above composite was measured by an oxygen bomb calorimeter. The compositions of TG-DSC residues at different peak temperatures and 1000 °C and the residues of oxygen bomb experiment were analyzed by X-ray diffraction (XRD), The results show that the pyrolytic products of Al-rich Al/PTFE/TiH2 materials under argon atmosphere can be divided into four stages. In the first stage (328.6–378.6 °C), the products are TiH1.924, (C2F4)n, (CF2)n, H2(g), Al and TiH2; in the second stage (510.8–534.3 °C), the products are Al, TiH1.924, (C2F4)n, (CF2)n, Ti, AlF3, TiF3, TiF4(g), C and H2(g). In the third stage (540.8–618.1 °C), the products are Al, C, Ti, (C2F4)n, (CF2)n, AlF3, TiF3, TiF4, CF4(g), C3F6(g), C4F8(g), C2F6(g), Al5Ti2 and H2(g); in the fourth stage (918.5–1000 °C), the products are AlCTi2, Al2Ti, AlTi, TiC, AlF3, Al, TiF3, TiC0.957, TiC0.981 and TiC0.95. The calorific value of the combustion of Al-rich Al/PTFE/TiH2 composite with 10% the content of TiH2 is the highest and is 19,899 J/g, which is 3.776% higher than that of Al-rich Al/PTFE composite. When TiH2 content is greater than zero and not more than 10%, the chemical reaction mechanism of Al-rich Al/PTFE/TiH2 is almost the same under oxygen atmosphere. When the content of TiH2 is higher than 10%, the mechanism of this material is different.
KW - Al-rich Al/PTFE/TiH2 composite
KW - Component analysis
KW - Oxygen bomb calorimeter
KW - Thermogravimetry differential scanning calorimetry
KW - Wet mixing
KW - X-ray diffractometer
UR - http://www.scopus.com/inward/record.url?scp=85113912145&partnerID=8YFLogxK
U2 - 10.3390/polym13172857
DO - 10.3390/polym13172857
M3 - Article
AN - SCOPUS:85113912145
SN - 2073-4360
VL - 13
JO - Polymers
JF - Polymers
IS - 17
M1 - 2857
ER -