TY - JOUR
T1 - Mechanical performance of 22SiMn2TiB steel welded with low-transformation-temperature filler wire and stainless steel filler wire
AU - Lin, Zi Dong
AU - Song, Kai Jie
AU - Sun, Zhen
AU - Zhu, Zi Qian
AU - Zhao, Xue Feng
AU - Goulas, Constantinos
AU - Ya, Wei
AU - Yu, Xing Hua
N1 - Publisher Copyright:
© China Iron and Steel Research Institute Group Co., Ltd. 2023.
PY - 2024/4
Y1 - 2024/4
N2 - TX-80 low-transformation-temperature (LTT) welding wire was used to replace the traditional ER 307Si welding wire to realize the connection of 22SiMn2TiB armor steel in manual overlay welding. The previously existing issues, such as welding cracks, large welding deformation, and severe welding residual stress, were solved to ensure good strength and ductility requirements. In particular, with the same welding conditions, TX-80 LTT wire eliminates welding cracks. It reduces the welding deformation no matter the base pretreatment of pre-setting angle or no pre-setting angle. By comparison, it was found that the microstructure at the TX-80 weld is mainly composed of martensite and a small amount of retained austenite. In contrast, the microstructure of the ER 307Si weld consists of a large amount of austenite and a small amount of skeleton-like ferrite. The variation trend of residual stress and microhardness from the weld to the base were investigated and compared with the mechanical properties of base materials. The TX-80 and the ER 307Si tensile samples elongation is 6.76% and 6.01%, while the ultimate tensile strengths are 877 and 667 MPa, respectively. The average impact toughness at room temperature of the ER 307Si weld is 143.9 J/cm2, much higher than that of the TX-80 weld, which is only 36.7 J/cm2. The relationship between impact and tensile properties with microstructure species and distribution was established. In addition, the fracture surface of the tensile and the impact samples was observed and analyzed. Deeper dimples, fewer pores, larger radiation zone, and shear lips of TX-80 samples indicate better tensile ductility and worse impact toughness than those of ER 307Si weld.
AB - TX-80 low-transformation-temperature (LTT) welding wire was used to replace the traditional ER 307Si welding wire to realize the connection of 22SiMn2TiB armor steel in manual overlay welding. The previously existing issues, such as welding cracks, large welding deformation, and severe welding residual stress, were solved to ensure good strength and ductility requirements. In particular, with the same welding conditions, TX-80 LTT wire eliminates welding cracks. It reduces the welding deformation no matter the base pretreatment of pre-setting angle or no pre-setting angle. By comparison, it was found that the microstructure at the TX-80 weld is mainly composed of martensite and a small amount of retained austenite. In contrast, the microstructure of the ER 307Si weld consists of a large amount of austenite and a small amount of skeleton-like ferrite. The variation trend of residual stress and microhardness from the weld to the base were investigated and compared with the mechanical properties of base materials. The TX-80 and the ER 307Si tensile samples elongation is 6.76% and 6.01%, while the ultimate tensile strengths are 877 and 667 MPa, respectively. The average impact toughness at room temperature of the ER 307Si weld is 143.9 J/cm2, much higher than that of the TX-80 weld, which is only 36.7 J/cm2. The relationship between impact and tensile properties with microstructure species and distribution was established. In addition, the fracture surface of the tensile and the impact samples was observed and analyzed. Deeper dimples, fewer pores, larger radiation zone, and shear lips of TX-80 samples indicate better tensile ductility and worse impact toughness than those of ER 307Si weld.
KW - 22SiMn2TiB steel
KW - Low-transformation-temperature material
KW - Martensitic transformation
KW - Mechanical property
KW - Residual stress
KW - Welding deformation
UR - http://www.scopus.com/inward/record.url?scp=85175001006&partnerID=8YFLogxK
U2 - 10.1007/s42243-023-01098-x
DO - 10.1007/s42243-023-01098-x
M3 - Article
AN - SCOPUS:85175001006
SN - 1006-706X
VL - 31
SP - 967
EP - 981
JO - Journal of Iron and Steel Research International
JF - Journal of Iron and Steel Research International
IS - 4
ER -