TY - JOUR
T1 - Mechanical and dielectric properties of Si3N4-SiO2 ceramics prepared by digital light processing based 3D printing and oxidation sintering
AU - Dong, Xingjie
AU - Wu, Jianqin
AU - Zhou, Qing
AU - Wang, Wenqing
AU - Zhang, Xueqin
AU - Zhang, Lu
AU - He, Rujie
N1 - Publisher Copyright:
© 2023 Elsevier Ltd and Techna Group S.r.l.
PY - 2023/9/15
Y1 - 2023/9/15
N2 - Si3N4-SiO2 ceramics are considered as the preferred high-performance wave-transmitting material in the aerospace field. However, traditional fabrication methods for Si3N4-SiO2 ceramics have the disadvantages of high cost and complicated fabrication process. In this paper, Si3N4-SiO2 ceramics with excellent mechanical and dielectric properties were fabricated by digital light processing-based 3D printing combined with oxidation sintering. Firstly, the curing thickness and viscosity of slurries with different solid loadings for vat photopolymerization-based 3D printing were studied. Then, the effects of the sintering temperature on the linear shrinkage, phase composition, microstructure, flexural strength, and dielectric properties of Si3N4-SiO2 ceramics, and the influences of solid loading on them were explored. The curing thickness and viscosity of the slurry with a solid loading of 55 vol% were 30 μm and ∼1.5 Pa‧s, respectively. The open porosity and the flexural strength of Si3N4-SiO2 ceramic with a solid loading of 55 vol% were 4.3 ± 0.61% and 76 ± 5.6 MPa, respectively. In the electromagnetic wave band of 8–18 GHz, the dielectric constant of Si3N4-SiO2 ceramics was within the range of less than 4, and the dielectric loss remained below 0.09. The method of digital light processing-based 3D printing combined with oxidation sintering can be further extended in the preparation of Si3N4-based structure-function integrated ceramics.
AB - Si3N4-SiO2 ceramics are considered as the preferred high-performance wave-transmitting material in the aerospace field. However, traditional fabrication methods for Si3N4-SiO2 ceramics have the disadvantages of high cost and complicated fabrication process. In this paper, Si3N4-SiO2 ceramics with excellent mechanical and dielectric properties were fabricated by digital light processing-based 3D printing combined with oxidation sintering. Firstly, the curing thickness and viscosity of slurries with different solid loadings for vat photopolymerization-based 3D printing were studied. Then, the effects of the sintering temperature on the linear shrinkage, phase composition, microstructure, flexural strength, and dielectric properties of Si3N4-SiO2 ceramics, and the influences of solid loading on them were explored. The curing thickness and viscosity of the slurry with a solid loading of 55 vol% were 30 μm and ∼1.5 Pa‧s, respectively. The open porosity and the flexural strength of Si3N4-SiO2 ceramic with a solid loading of 55 vol% were 4.3 ± 0.61% and 76 ± 5.6 MPa, respectively. In the electromagnetic wave band of 8–18 GHz, the dielectric constant of Si3N4-SiO2 ceramics was within the range of less than 4, and the dielectric loss remained below 0.09. The method of digital light processing-based 3D printing combined with oxidation sintering can be further extended in the preparation of Si3N4-based structure-function integrated ceramics.
KW - Dielectric property
KW - Digital light processing based 3D printing
KW - Mechanical property
KW - Oxidation sintering
KW - SiN-SiO ceramics
UR - http://www.scopus.com/inward/record.url?scp=85163438506&partnerID=8YFLogxK
U2 - 10.1016/j.ceramint.2023.06.210
DO - 10.1016/j.ceramint.2023.06.210
M3 - Article
AN - SCOPUS:85163438506
SN - 0272-8842
VL - 49
SP - 29699
EP - 29708
JO - Ceramics International
JF - Ceramics International
IS - 18
ER -