TY - JOUR
T1 - Matrix-monotonic optimization - Part II
T2 - Multi-variable optimization
AU - Xing, Chengwen
AU - Wang, Shuai
AU - Chen, Sheng
AU - Ma, Shaodan
AU - Poor, H. Vincent
AU - Hanzo, Lajos
N1 - Publisher Copyright:
© 1991-2012 IEEE.
PY - 2021
Y1 - 2021
N2 - In contrast to Part I of this treatise (Xing, 2021) that focuses on the optimization problems associated with single matrix variables, in this paper, we investigate the application of the matrix-monotonic optimization framework in the optimization problems associated with multiple matrix variables. It is revealed that matrix-monotonic optimization still works even for multiple matrix-variate based optimization problems, provided that certain conditions are satisfied. Using this framework, the optimal structures of the matrix variables can be derived and the associated multiple matrix-variate optimization problems can be substantially simplified. In this paper several specific examples are given, which are essentially open problems. Firstly, we investigate multi-user multiple-input multiple-output (MU-MIMO) uplink communications under various power constraints. Using the proposed framework, the optimal structures of the precoding matrices at each user under various power constraints can be derived. Secondly, we considered the optimization of the signal compression matrices at each sensor under various power constraints in distributed sensor networks. Finally, we investigate the transceiver optimization for multi-hop amplify-and-forward (AF) MIMO relaying networks with imperfect channel state information (CSI) under various power constraints. At the end of this paper, several simulation results are given to demonstrate the accuracy of the proposed theoretical results.
AB - In contrast to Part I of this treatise (Xing, 2021) that focuses on the optimization problems associated with single matrix variables, in this paper, we investigate the application of the matrix-monotonic optimization framework in the optimization problems associated with multiple matrix variables. It is revealed that matrix-monotonic optimization still works even for multiple matrix-variate based optimization problems, provided that certain conditions are satisfied. Using this framework, the optimal structures of the matrix variables can be derived and the associated multiple matrix-variate optimization problems can be substantially simplified. In this paper several specific examples are given, which are essentially open problems. Firstly, we investigate multi-user multiple-input multiple-output (MU-MIMO) uplink communications under various power constraints. Using the proposed framework, the optimal structures of the precoding matrices at each user under various power constraints can be derived. Secondly, we considered the optimization of the signal compression matrices at each sensor under various power constraints in distributed sensor networks. Finally, we investigate the transceiver optimization for multi-hop amplify-and-forward (AF) MIMO relaying networks with imperfect channel state information (CSI) under various power constraints. At the end of this paper, several simulation results are given to demonstrate the accuracy of the proposed theoretical results.
KW - MIMO
KW - matrix-monotonic optimization
KW - multiple matrix-variate optimizations
UR - http://www.scopus.com/inward/record.url?scp=85100889212&partnerID=8YFLogxK
U2 - 10.1109/TSP.2020.3037495
DO - 10.1109/TSP.2020.3037495
M3 - Article
AN - SCOPUS:85100889212
SN - 1053-587X
VL - 69
SP - 179
EP - 194
JO - IEEE Transactions on Signal Processing
JF - IEEE Transactions on Signal Processing
M1 - 9257097
ER -