MATCHING OF GIVEN SIZES IN HYPERGRAPHS

Yulin Chang, Huifen Ge, Jie Han*, Guanghui Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

For all integers k, d such that k \geq 3 and k/2 \leq d \leq k - 1, let n be a sufficiently large integer (which may not be divisible by k), and let s \leq \lfloor n/k\rfloor - 1. We show that if H is a k-uniform hypergraph on n vertices with \delta d(H) > \bigl(nk --dd\bigr) - \bigl(n -kd--ds+1\bigr) , then H contains a matching of size s. This improves a recent result of Lu, Yu, and Yuan and also answers a question of K\" uhn, Osthus, and Townsend. In many cases, our result can be strengthened to s \leq \lfloor n/k\rfloor , which then covers the entire possible range of s. On the other hand, there are examples showing that the result does not hold for certain n, k, d, and s = \lfloor n/k\rfloor .

源语言英语
页(从-至)2323-2338
页数16
期刊SIAM Journal on Discrete Mathematics
36
3
DOI
出版状态已出版 - 2022

指纹

探究 'MATCHING OF GIVEN SIZES IN HYPERGRAPHS' 的科研主题。它们共同构成独一无二的指纹。

引用此