Martingale solutions and Markov selections for stochastic partial differential equations

Benjamin Goldys, Michael Röckner*, Xicheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

52 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 52
  • Captures
    • Readers: 5
see details

摘要

We present a general framework for solving stochastic porous medium equations and stochastic Navier-Stokes equations in the sense of martingale solutions. Following Krylov [N.V. Krylov, The selection of a Markov process from a Markov system of processes, and the construction of quasidiffusion processes, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 691-708] and Flandoli-Romito [F. Flandoli, N. Romito, Markov selections for the 3D stochastic Navier-Stokes equations, Probab. Theory Related Fields 140 (2008) 407-458], we also study the existence of Markov selections for stochastic evolution equations in the absence of uniqueness.

源语言英语
页(从-至)1725-1764
页数40
期刊Stochastic Processes and their Applications
119
5
DOI
出版状态已出版 - 5月 2009
已对外发布

指纹

探究 'Martingale solutions and Markov selections for stochastic partial differential equations' 的科研主题。它们共同构成独一无二的指纹。

引用此

Goldys, B., Röckner, M., & Zhang, X. (2009). Martingale solutions and Markov selections for stochastic partial differential equations. Stochastic Processes and their Applications, 119(5), 1725-1764. https://doi.org/10.1016/j.spa.2008.08.009