MalDBA: Detection for Query-Based Malware Black-Box Adversarial Attacks

Zixiao Kong, Jingfeng Xue, Zhenyan Liu*, Yong Wang, Weijie Han

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

The increasing popularity of Industry 4.0 has led to more and more security risks, and malware adversarial attacks emerge in an endless stream, posing great challenges to user data security and privacy protection. In this paper, we investigate the stateful detection method for artificial intelligence deep learning-based malware black-box attacks, i.e., determining the presence of adversarial attacks rather than detecting whether the input samples are malicious or not. To this end, we propose the MalDBA method for experiments on the VirusShare dataset. We find that query-based black-box attacks produce a series of highly similar historical query results (also known as intermediate samples). By comparing the similarity among these intermediate samples and the trend of prediction scores returned by the detector, we can detect the presence of adversarial samples in indexed samples and thus determine whether an adversarial attack has occurred, and then protect user data security and privacy. The experimental results show that the attack detection rate can reach 100%. Compared to similar studies, our method does not require heavy feature extraction tasks or image conversion and can be operated on complete PE files without requiring a strong hardware platform.

源语言英语
文章编号1751
期刊Electronics (Switzerland)
12
7
DOI
出版状态已出版 - 4月 2023

指纹

探究 'MalDBA: Detection for Query-Based Malware Black-Box Adversarial Attacks' 的科研主题。它们共同构成独一无二的指纹。

引用此