摘要
The Internet has become an indispensable part of people’s work and life. It provides favorable communication conditions for malwares. Therefore, malwares are endless and spread faster and become one of the main threats of current network security. Based on the malware analysis process, from the original feature extraction and feature selection to malware detection, this paper introduces the machine learning algorithm such as clustering, classification and association analysis, and how to use the machine learning algorithm to malware and its variants for effective analysis.
源语言 | 英语 |
---|---|
主期刊名 | Network and System Security - 11th International Conference, NSS 2017, Proceedings |
编辑 | Zheng Yan, Refik Molva, Wojciech Mazurczyk, Raimo Kantola |
出版商 | Springer Verlag |
页 | 386-398 |
页数 | 13 |
ISBN(印刷版) | 9783319647005 |
DOI | |
出版状态 | 已出版 - 2017 |
活动 | 11th International Conference on Network and System Security, NSS 2017 - Helsinki, 芬兰 期限: 21 8月 2017 → 23 8月 2017 |
出版系列
姓名 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
卷 | 10394 LNCS |
ISSN(印刷版) | 0302-9743 |
ISSN(电子版) | 1611-3349 |
会议
会议 | 11th International Conference on Network and System Security, NSS 2017 |
---|---|
国家/地区 | 芬兰 |
市 | Helsinki |
时期 | 21/08/17 → 23/08/17 |
指纹
探究 'Machine learning for analyzing malware' 的科研主题。它们共同构成独一无二的指纹。引用此
Dong, Y., Liu, Z., Yan, Y., Wang, Y., Peng, T., & Zhang, J. (2017). Machine learning for analyzing malware. 在 Z. Yan, R. Molva, W. Mazurczyk, & R. Kantola (编辑), Network and System Security - 11th International Conference, NSS 2017, Proceedings (页码 386-398). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 10394 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-64701-2_28