LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery

Xin Wu, Danfeng Hong, Pedram Ghamisi, Wei Li, Ran Tao

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

In this paper, we propose to extract the multi-scaled and rotation-insensitive deep features to address the issues of object multi-solutions and rotations in geospatial object detection. To this end, we develop a novel object detection framework where a rotation-insensitive convolution neural network is applied for extracting multi-scaled and direction-insensitive feature representation and then the learned features can be fed into the ensemble classifier learning with fast feature pyramid. Such a non-end-to-end learning strategy intuitively reduces the computational cost without the additional performance loss, yielding an effective and efficient light-weight object detection framework. Experimental results conducted on the NWPU VHR-10 dataset demonstrate that the proposed framework outperforms several state-of-the-art baselines.

源语言英语
主期刊名2019 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
1462-1465
页数4
ISBN(电子版)9781538691540
DOI
出版状态已出版 - 7月 2019
活动39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 - Yokohama, 日本
期限: 28 7月 20192 8月 2019

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)

会议

会议39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019
国家/地区日本
Yokohama
时期28/07/192/08/19

指纹

探究 'LW-ODF: A Light-Weight Object Detection Framework for Optical Remote Sensing Imagery' 的科研主题。它们共同构成独一无二的指纹。

引用此