摘要
For p∈(1,∞), let u(t,x,v) and f(t,x,v) be in Lp(R×Rd×Rd) and satisfy the following nonlocal kinetic Fokker–Plank equation on R1+2d in the weak sense: ∂tu+v⋅∇xu=Δα/2 vu+f, where α∈(0,2) and Δv α/2 is the usual fractional Laplacian applied to v-variable. We show that there is a constant C=C(p,α,d)>0 such that for any f(t,x,v)∈Lp(R×Rd×Rd)=Lp(R1+2d), ‖Δx α/(2(1+α))u‖p+‖Δv α/2u‖p⩽C‖f‖p, where ‖⋅‖p is the usual Lp-norm in Lp(R1+2d;dz). In fact, in this paper the above inequality is established for a large class of time-dependent non-local kinetic Fokker–Plank equations on R1+2d, with Utv⋅∇x and Lσt νt in place of v⋅∇x and Δv α/2. See Theorem 3.3 for details.
源语言 | 英语 |
---|---|
页(从-至) | 52-87 |
页数 | 36 |
期刊 | Journal des Mathematiques Pures et Appliquees |
卷 | 116 |
DOI | |
出版状态 | 已出版 - 8月 2018 |
已对外发布 | 是 |
指纹
探究 'Lp-maximal hypoelliptic regularity of nonlocal kinetic Fokker–Planck operators' 的科研主题。它们共同构成独一无二的指纹。引用此
Chen, Z. Q., & Zhang, X. (2018). Lp-maximal hypoelliptic regularity of nonlocal kinetic Fokker–Planck operators. Journal des Mathematiques Pures et Appliquees, 116, 52-87. https://doi.org/10.1016/j.matpur.2017.10.003