LS-SVR with variant parameters and its practical applications for seismic prospecting data denoising

Xiaoying Deng*, Dinghui Yang, Baojun Yang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Abstract-Signal denoising can be considered as a function regression problem. LS-SVR (Least Squares-Support Vector Regression) based on Ricker wavelet kernel function is applied to the practical seismic prospecting data denoising in this paper. To adapt LS-SVR well to the practical seismic data, the parameters including Ricker wavelet kernel parameter f and regularization parameter y are selected automatically according to the features of data in the fixed window. The denoising experimental results for the theoretical and practical seismic data show that the performance of Ricker wavelet LS-SVR with variant parameters outperforms the one with invariant parameters in terms of the retrieved waveform in time domain and spectrum range in frequency domain.

源语言英语
主期刊名2008 IEEE International Symposium on Industrial Electronics, ISIE 2008
1060-1063
页数4
DOI
出版状态已出版 - 2008
已对外发布
活动2008 IEEE International Symposium on Industrial Electronics, ISIE 2008 - Cambridge, 英国
期限: 30 6月 20082 7月 2008

出版系列

姓名IEEE International Symposium on Industrial Electronics

会议

会议2008 IEEE International Symposium on Industrial Electronics, ISIE 2008
国家/地区英国
Cambridge
时期30/06/082/07/08

指纹

探究 'LS-SVR with variant parameters and its practical applications for seismic prospecting data denoising' 的科研主题。它们共同构成独一无二的指纹。

引用此