摘要
In this paper, we study the global well-posedness below the energy norm of the Cauchy problem for the Klein-Gordon system in R3. We prove the Hs-global well-posedness with s < 1 of the Cauchy problem for the Klein-Gordon system. The method invoked is different from the well-known Bourgain's method [Jean Bourgain, Refinements of Strichartz's inequality and applications to 2D-NLS with critical nonlinearity, International Mathematial Research Notices 5 (1998) 253-283].
源语言 | 英语 |
---|---|
页(从-至) | 982-998 |
页数 | 17 |
期刊 | Nonlinear Analysis, Theory, Methods and Applications |
卷 | 70 |
期 | 2 |
DOI | |
出版状态 | 已出版 - 15 1月 2009 |
已对外发布 | 是 |
指纹
探究 'Low regularity for the nonlinear Klein-Gordon systems' 的科研主题。它们共同构成独一无二的指纹。引用此
Yuan, J., & Zhang, J. (2009). Low regularity for the nonlinear Klein-Gordon systems. Nonlinear Analysis, Theory, Methods and Applications, 70(2), 982-998. https://doi.org/10.1016/j.na.2008.01.026