Low-Complexity Adaptive Sampling of Block Compressed Sensing Based on Distortion Minimization

Qunlin Chen, Derong Chen, Jiulu Gong*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

4 引用 (Scopus)

摘要

Block compressed sensing (BCS) is suitable for image sampling and compression in resource-constrained applications. Adaptive sampling methods can effectively improve the rate-distortion performance of BCS. However, adaptive sampling methods bring high computational complexity to the encoder, which loses the superiority of BCS. In this paper, we focus on improving the adaptive sampling performance at the cost of low computational complexity. Firstly, we analyze the additional computational complexity of the existing adaptive sampling methods for BCS. Secondly, the adaptive sampling problem of BCS is modeled as a distortion minimization problem. We present three distortion models to reveal the relationship between block sampling rate and block distortion and use a simple neural network to predict the model parameters from several measurements. Finally, a fast estimation method is proposed to allocate block sampling rates based on distortion minimization. The results demonstrate that the proposed estimation method of block sampling rates is effective. Two of the three proposed distortion models can make the proposed estimation method have better performance than the existing adaptive sampling methods of BCS. Compared with the calculation of BCS at the sampling rate of 0.1, the additional calculation of the proposed adaptive sampling method is less than 1.9%.

源语言英语
文章编号4806
期刊Sensors
22
13
DOI
出版状态已出版 - 1 7月 2022

指纹

探究 'Low-Complexity Adaptive Sampling of Block Compressed Sensing Based on Distortion Minimization' 的科研主题。它们共同构成独一无二的指纹。

引用此