Local Well-Posedness of Skew Mean Curvature Flow for Small Data in d≥ 4 Dimensions

Jiaxi Huang, Daniel Tataru*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The skew mean curvature flow is an evolution equation for d dimensional manifolds embedded in Rd+2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension d≥ 4.

源语言英语
页(从-至)1569-1645
页数77
期刊Communications in Mathematical Physics
389
3
DOI
出版状态已出版 - 2月 2022
已对外发布

指纹

探究 'Local Well-Posedness of Skew Mean Curvature Flow for Small Data in d≥ 4 Dimensions' 的科研主题。它们共同构成独一无二的指纹。

引用此