TY - JOUR
T1 - Local atomic ordering strategy for high strength Mg alloy design by first-principle calculations
AU - Su, Hui
AU - Zhang, Chi
AU - Wang, Shuo
AU - Tian, Guangyuan
AU - Xue, Chenpeng
AU - Wang, Junsheng
AU - Guan, Shaokang
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/6/25
Y1 - 2022/6/25
N2 - In this study, solute X (X = Li, Al, Mn, Zn, Y, Zr, Nd, and Gd) solution strengthening in Mg alloys have been screened by ab initio density functional theory calculations to quantify not only the substitutional stacking-fault configurations but also the solute ordering sequence as a function of local segregation. Interestingly, it has been found that the strengthening effects of single atom addition to a supercell made of 64 atoms can be mostly attributed to lattice distortions (Mn>Nd>Gd>Y>Zn>Al>Zr>Li), while the local ordering arrangements of Mg-X complex actually contribute most to the strengthening when the solute concentration rises. For example, Nd can induce a large local atomic ordering and significantly increase the basal critical-resolved shear stress (CRSS). A linear relationship between solute concentrations and ideal strength, and the quasi-quadratic relationship between solute atomic radii and ideal strength have been observed. Simultaneously, the higher the solute concentration, the higher degree of the solid solution strengthening, resulting in a smaller quasi-quadratic function curve opening. Based on the screening of the chemical (including stacking fault energy and atomic bonds) and strain (lattice distortion energy) energy calculations, we have discovered that the solute strengthening follows the ordering sequence of Nd> Mn> Gd> Y> Zn> Al> Zr> Li.
AB - In this study, solute X (X = Li, Al, Mn, Zn, Y, Zr, Nd, and Gd) solution strengthening in Mg alloys have been screened by ab initio density functional theory calculations to quantify not only the substitutional stacking-fault configurations but also the solute ordering sequence as a function of local segregation. Interestingly, it has been found that the strengthening effects of single atom addition to a supercell made of 64 atoms can be mostly attributed to lattice distortions (Mn>Nd>Gd>Y>Zn>Al>Zr>Li), while the local ordering arrangements of Mg-X complex actually contribute most to the strengthening when the solute concentration rises. For example, Nd can induce a large local atomic ordering and significantly increase the basal critical-resolved shear stress (CRSS). A linear relationship between solute concentrations and ideal strength, and the quasi-quadratic relationship between solute atomic radii and ideal strength have been observed. Simultaneously, the higher the solute concentration, the higher degree of the solid solution strengthening, resulting in a smaller quasi-quadratic function curve opening. Based on the screening of the chemical (including stacking fault energy and atomic bonds) and strain (lattice distortion energy) energy calculations, we have discovered that the solute strengthening follows the ordering sequence of Nd> Mn> Gd> Y> Zn> Al> Zr> Li.
KW - First-principle calculation
KW - Mg alloys
KW - Short-range order
KW - Solid solution strengthening
KW - Stacking fault
KW - ab-initio modelling
UR - http://www.scopus.com/inward/record.url?scp=85126548168&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2022.164491
DO - 10.1016/j.jallcom.2022.164491
M3 - Article
AN - SCOPUS:85126548168
SN - 0925-8388
VL - 907
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 164491
ER -