Local and 2-local Lie-type Derivations of Operator Algebras on Banach Spaces

Zhi Cheng Deng, Feng Wei*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Let X be a Banach space over the field F (F is either the real field R or the complex field C). Let B(X) be the set of all bounded linear operators on X and F(X) be the set of all finite rank operators in B(X). A subalgebra A of B(X) is called a standard operator algebra if A contains F(X). Suppose that δ is a map from A into B(X). Firstly, we prove that if δ is a Lie-type derivation, then δ has the standard form. Furthermore, we show that if δ is a local Lie-type derivation, then δ is a Lie-type derivation. Finally, we prove that if δ is a 2-local Lie n-derivation, then δ=d+τ, where d is a derivation, and τ is homogeneous map from A into FI such that τ(A+B)=τ(A) for each A, B in A where B is a sum of (n-1)-th commutators.

源语言英语
主期刊名Advances in Ring Theory and Applications - WARA22
编辑Shakir Ali, Mohammad Ashraf, Nadeem ur Rehman, Vincenzo De Filippis
出版商Springer
175-188
页数14
ISBN(印刷版)9783031507946
DOI
出版状态已出版 - 2024
活动Workshop on Associative Rings and Algebras with Additional Structures, WARA 2022 - Messina, 意大利
期限: 18 7月 202220 7月 2022

出版系列

姓名Springer Proceedings in Mathematics and Statistics
443
ISSN(印刷版)2194-1009
ISSN(电子版)2194-1017

会议

会议Workshop on Associative Rings and Algebras with Additional Structures, WARA 2022
国家/地区意大利
Messina
时期18/07/2220/07/22

指纹

探究 'Local and 2-local Lie-type Derivations of Operator Algebras on Banach Spaces' 的科研主题。它们共同构成独一无二的指纹。

引用此