TY - JOUR
T1 - Light-induced high-efficient cellular production of immune functional extracellular vesicles
AU - Ruan, Shaobo
AU - Erwin, Nina
AU - He, Mei
N1 - Publisher Copyright:
© 2022 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals, LLC on behalf of the International Society for Extracellular Vesicles
PY - 2022/3
Y1 - 2022/3
N2 - Extracellular vesicle (EV)-based therapies and vaccines are emerging. However, employment at the scale for population-based dose development is always a huge bottleneck. In order to overcome such a roadblock, we introduce a simple and straightforward approach for promoting cellular production of dendritic cell derived EVs (DEVs) by leveraging phototherapy based light induction. Under the optimization of light wavelengths, intensities, and exposure times, we achieved more than 13-fold enhancement in DEV production rate, while maintaining good integral quality and immune function from produced EVs. The LED light at 365 nm is optimal to reliably trigger enhanced cellular production of EVs no matter cell line types. Our observation and other reported studies support longer near UV wavelength does not impair cell growth. We conducted a series of investigations in terms of size, zeta potential, morphology, immune surface markers and cytokines, biocompatibility, cellular uptake behaviour, and immune-modulation ability on eliciting cellular responses in vitro. We also validated the biodistribution, immunogenicity, and administration safety using light-promoted DEVs in mice models from both male and female genders. Overall data supports that light promoted DEVs are highly immune functional with great biocompatibility for serving as good therapeutic platforms. The in vivo animal study also demonstrated light-promoted DEVs are as well tolerated as native DEVs, with no safety concerns. Taken together, the data supports that light promoted DEVs are in excellent quality, high biocompatibility, in vivo tolerant, and viable for serving as an ideal therapeutic platform in scalable production.
AB - Extracellular vesicle (EV)-based therapies and vaccines are emerging. However, employment at the scale for population-based dose development is always a huge bottleneck. In order to overcome such a roadblock, we introduce a simple and straightforward approach for promoting cellular production of dendritic cell derived EVs (DEVs) by leveraging phototherapy based light induction. Under the optimization of light wavelengths, intensities, and exposure times, we achieved more than 13-fold enhancement in DEV production rate, while maintaining good integral quality and immune function from produced EVs. The LED light at 365 nm is optimal to reliably trigger enhanced cellular production of EVs no matter cell line types. Our observation and other reported studies support longer near UV wavelength does not impair cell growth. We conducted a series of investigations in terms of size, zeta potential, morphology, immune surface markers and cytokines, biocompatibility, cellular uptake behaviour, and immune-modulation ability on eliciting cellular responses in vitro. We also validated the biodistribution, immunogenicity, and administration safety using light-promoted DEVs in mice models from both male and female genders. Overall data supports that light promoted DEVs are highly immune functional with great biocompatibility for serving as good therapeutic platforms. The in vivo animal study also demonstrated light-promoted DEVs are as well tolerated as native DEVs, with no safety concerns. Taken together, the data supports that light promoted DEVs are in excellent quality, high biocompatibility, in vivo tolerant, and viable for serving as an ideal therapeutic platform in scalable production.
KW - extracellular vesicles
KW - high-efficient production
KW - immunomodulation
KW - immunotherapy
KW - light promotion
UR - http://www.scopus.com/inward/record.url?scp=85125553657&partnerID=8YFLogxK
U2 - 10.1002/jev2.12194
DO - 10.1002/jev2.12194
M3 - Article
C2 - 35230743
AN - SCOPUS:85125553657
SN - 2001-3078
VL - 11
JO - Journal of Extracellular Vesicles
JF - Journal of Extracellular Vesicles
IS - 3
M1 - e12194
ER -