Lie algebras generated by Jordan operators

Peng Cao*, Shanli Sun

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

It is proved that if Ji is a Jordan operator on a Hilbert space with the Jordan decomposition Ji = Ni+Qi, where Ni is normal and Qi is compact and quasinilpotent, i = 1, 2, and the Lie algebra generated by J1, J2 is an Engel Lie algebra, then the Banach algebra generated by J1, J2 is an Engel algebra. Some results for normal operators and Jordan operators on Banach spaces are given.

源语言英语
页(从-至)267-274
页数8
期刊Studia Mathematica
186
3
DOI
出版状态已出版 - 2008

指纹

探究 'Lie algebras generated by Jordan operators' 的科研主题。它们共同构成独一无二的指纹。

引用此

Cao, P., & Sun, S. (2008). Lie algebras generated by Jordan operators. Studia Mathematica, 186(3), 267-274. https://doi.org/10.4064/sm186-3-5