Lie algebras generated by bounded linear operators on Hilbert spaces

Peng Cao*, Shanli Sun

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 2
see details

摘要

It is proved that the operator Lie algebra ε (T, T*) generated by a bounded linear operator T on Hilbert space H is finite-dimensional if and only if T = N + Q, N is a normal operator, [N, Q] = 0, and dim A (Q, Q*) < + ∞, where ε (T, T*) denotes the smallest Lie algebra containing T, T*, and A (Q, Q*) denotes the associative subalgebra of B (H) generated by Q, Q*. Moreover, we also give a sufficient and necessary condition for operators to generate finite-dimensional semi-simple Lie algebras. Finally, we prove that if ε (T, T*) is an ad-compact E-solvable Lie algebra, then T is a normal operator.

源语言英语
页(从-至)461-470
页数10
期刊Journal of Mathematical Analysis and Applications
327
1
DOI
出版状态已出版 - 1 3月 2007
已对外发布

指纹

探究 'Lie algebras generated by bounded linear operators on Hilbert spaces' 的科研主题。它们共同构成独一无二的指纹。

引用此

Cao, P., & Sun, S. (2007). Lie algebras generated by bounded linear operators on Hilbert spaces. Journal of Mathematical Analysis and Applications, 327(1), 461-470. https://doi.org/10.1016/j.jmaa.2006.04.050