摘要
The sluggish oxygen reaction kinetics concomitant with the high overpotentials and parasitic reactions from cathodes and solvents is the major challenge in aprotic lithium-oxygen (Li–O2) batteries. Herein, PtIr multipods with a low Lewis acidity of the Pt atoms are reported as an advanced cathode for improving overpotentials and stabilities. DFT calculations disclose that electrons have a strong disposition to transfer from Ir to Pt, since Pt has a higher electronegativity than Ir, resulting in a lower Lewis acidity of the Pt atoms than that on the pure Pt surface. The low Lewis acidity of Pt atoms on the PtIr surface entails a high electron density and a down-shifting of the d-band center, thereby weakening the binding energy towards intermediates (LiO2), which is the key in achieving low oxygen-reduction-reaction (ORR) and oxygen-evolution-reaction (OER) overpotentials. The Li–O2 cell based on PtIr electrodes exhibits a very low overall discharge/charge overpotential (0.44 V) and an excellent cycle life (180 cycles), outperforming the bulk of reported noble-metal-based cathodes.
源语言 | 英语 |
---|---|
页(从-至) | 26592-26598 |
页数 | 7 |
期刊 | Angewandte Chemie - International Edition |
卷 | 60 |
期 | 51 |
DOI | |
出版状态 | 已出版 - 13 12月 2021 |