Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway

Yuhan Wu, Zhanpeng Zhu, Tian Lan, Shuhan Li, Ye Li, Changmin Wang, Yabo Feng, Xueqin Mao*, Shuyan Yu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

Depression is a common psychological disease with high morbidity and mortality. Recently, the involvement of synaptic plasticity in the pathogenesis of depression has shed light on the direction of developing novel antidepressants. Levomilnacipran is a newly approved medication for the treatment of adult major depressive disorder. However, the detailed mechanisms underlying its antidepressant-like effects have yet to be illuminated. In this study, we aimed to investigate the role of levomilnacipran in regulating synaptic plasticity and explore the possible molecular mechanisms of its antidepressant effects using a rat model of depression induced by lipopolysaccharide (LPS). The results demonstrated that levomilnacipran (30 mg/kg, i.p.) significantly ameliorated depression-like behaviors in rats, alleviated the dysregulation of synaptic plasticity, and suppressed neuroinflammation within hippocampus induced by LPS-treatment. Levomilnacipran increased the expression of postsynaptic dense 95 (PSD-95) and synaptophysin (Syn) and reversed the imbalance between pro- and anti-inflammatory cytokines within hippocampus of depressed rats. Additionally, levomilnacipran elevated expression level of brain-derived neurotrophic factor (BDNF), accompanied by increased tyrosine kinase B (TrkB), phosphorylated phosphatidylinositol 3-kinase (PI3K), phosphorylated protein kinase B (p-Akt), and phosphorylated mammalian target of rapamycin (p-mTOR). Taken together, these results suggest that levomilnacipran may exert antidepressant effects via upregulating BDNF/TrkB mediated PI3K/Akt/mTOR signaling pathway to improve synaptic plasticity. These findings reveal potential mechanisms for the antidepressant effects of levomilnacipran and offer new insights into the treatments for depression. Graphical Abstract: [Figure not available: see fulltext.]

源语言英语
期刊Molecular Neurobiology
DOI
出版状态已接受/待刊 - 2023
已对外发布

指纹

探究 'Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway' 的科研主题。它们共同构成独一无二的指纹。

引用此