TY - JOUR
T1 - Learning Latent Dynamic Robust Representations for World Models
AU - Sun, Ruixiang
AU - Zang, Hongyu
AU - Li, Xin
AU - Islam, Riashat
N1 - Publisher Copyright:
Copyright 2024 by the author(s)
PY - 2024
Y1 - 2024
N2 - Visual Model-Based Reinforcement Learning (MBRL) promises to encapsulate agent’s knowledge about the underlying dynamics of the environment, enabling learning a world model as a useful planner. However, top MBRL agents such as Dreamer often struggle with visual pixel-based inputs in the presence of exogenous or irrelevant noise in the observation space, due to failure to capture task-specific features while filtering out irrelevant spatio-temporal details. To tackle this problem, we apply a spatio-temporal masking strategy, a bisimulation principle, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models, effectively eliminating non-essential information. Joint training of representations, dynamics, and policy often leads to instabilities. To further address this issue, we develop a Hybrid Recurrent State-Space Model (HRSSM) structure, enhancing state representation robustness for effective policy learning. Our empirical evaluation demonstrates significant performance improvements over existing methods in a range of visually complex control tasks such as Maniskill (Gu et al., 2023) with exogenous distractors from the Matterport environment. Our code is avaliable at https://github.com/bit1029public/HRSSM.
AB - Visual Model-Based Reinforcement Learning (MBRL) promises to encapsulate agent’s knowledge about the underlying dynamics of the environment, enabling learning a world model as a useful planner. However, top MBRL agents such as Dreamer often struggle with visual pixel-based inputs in the presence of exogenous or irrelevant noise in the observation space, due to failure to capture task-specific features while filtering out irrelevant spatio-temporal details. To tackle this problem, we apply a spatio-temporal masking strategy, a bisimulation principle, combined with latent reconstruction, to capture endogenous task-specific aspects of the environment for world models, effectively eliminating non-essential information. Joint training of representations, dynamics, and policy often leads to instabilities. To further address this issue, we develop a Hybrid Recurrent State-Space Model (HRSSM) structure, enhancing state representation robustness for effective policy learning. Our empirical evaluation demonstrates significant performance improvements over existing methods in a range of visually complex control tasks such as Maniskill (Gu et al., 2023) with exogenous distractors from the Matterport environment. Our code is avaliable at https://github.com/bit1029public/HRSSM.
UR - http://www.scopus.com/inward/record.url?scp=85203812670&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85203812670
SN - 2640-3498
VL - 235
SP - 47234
EP - 47260
JO - Proceedings of Machine Learning Research
JF - Proceedings of Machine Learning Research
T2 - 41st International Conference on Machine Learning, ICML 2024
Y2 - 21 July 2024 through 27 July 2024
ER -