Learning Camouflaged Object Detection from Noisy Pseudo Label

Jin Zhang, Ruiheng Zhang*, Yanjiao Shi, Zhe Cao, Nian Liu, Fahad Shahbaz Khan

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Existing Camouflaged Object Detection (COD) methods rely heavily on large-scale pixel-annotated training sets, which are both time-consuming and labor-intensive. Although weakly supervised methods offer higher annotation efficiency, their performance is far behind due to the unclear visual demarcations between foreground and background in camouflaged images. In this paper, we explore the potential of using boxes as prompts in camouflaged scenes and introduce the first weakly semi-supervised COD method, aiming for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images. Critically, learning from such limited set inevitably generates pseudo labels with serious noisy pixels. To address this, we propose a noise correction loss that facilitates the model’s learning of correct pixels in the early learning stage, and corrects the error risk gradients dominated by noisy pixels in the memorization stage, ultimately achieving accurate segmentation of camouflaged objects from noisy labels. When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.

源语言英语
主期刊名Computer Vision – ECCV 2024 - 18th European Conference, Proceedings
编辑Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
出版商Springer Science and Business Media Deutschland GmbH
158-174
页数17
ISBN(印刷版)9783031732317
DOI
出版状态已出版 - 2025
活动18th European Conference on Computer Vision, ECCV 2024 - Milan, 意大利
期限: 29 9月 20244 10月 2024

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
15059 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议18th European Conference on Computer Vision, ECCV 2024
国家/地区意大利
Milan
时期29/09/244/10/24

指纹

探究 'Learning Camouflaged Object Detection from Noisy Pseudo Label' 的科研主题。它们共同构成独一无二的指纹。

引用此