Learning and inferring a driver's braking action in car-following scenarios

Wenshuo Wang, Junqiang Xi*, Ding Zhao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

87 引用 (Scopus)

摘要

Accurately predicting and inferring a driver's decision to brake is critical for designing warning systems and avoiding collisions. In this paper, we focus on predicting a driver's intent to brake in car-following scenarios from a perception-decision-action perspective according to his/her driving history. A learning-based inference method, using onboard data from CAN-Bus, radar, and cameras as explanatory variables, is introduced to infer drivers' braking decisions by combining a Gaussian mixture model (GMM) with a hidden Markov model (HMM). The GMM is used to model stochastic relationships among variables, while the HMM is applied to infer drivers' braking actions based on the GMM. Real-case driving data from 49 drivers (more than three years' driving data per driver on average) have been collected from the University of Michigan Safety Pilot Model Deployment database. We compare the GMM-HMM method to a support vector machine (SVM) method and a SVM-Bayesian filtering method. The experimental results are evaluated by employing three performance metrics: accuracy, sensitivity, and specificity. The comparison results show that the GMM-HMM obtains the best performance, with an accuracy of 90%, sensitivity of 84%, and specificity of 97%. Thus, we believe that this method has great potential for real-world active safety systems.

源语言英语
页(从-至)3887-3899
页数13
期刊IEEE Transactions on Vehicular Technology
67
5
DOI
出版状态已出版 - 5月 2018

指纹

探究 'Learning and inferring a driver's braking action in car-following scenarios' 的科研主题。它们共同构成独一无二的指纹。

引用此