Learnability Enhancement for Low-light Raw Denoising: Where Paired Real Data Meets Noise Modeling

Hansen Feng, Lizhi Wang*, Yuzhi Wang, Hua Huang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

22 引用 (Scopus)

摘要

Low-light raw denoising is an important and valuable task in computational photography where learning-based methods trained with paired real data are mainstream. However, the limited data volume and complicated noise distribution have constituted a learnability bottleneck for paired real data, which limits the denoising performance of learning-based methods. To address this issue, we present a learnability enhancement strategy to reform paired real data according to noise modeling. Our strategy consists of two efficient techniques: shot noise augmentation (SNA) and dark shading correction (DSC). Through noise model decoupling, SNA improves the precision of data mapping by increasing the data volume and DSC reduces the complexity of data mapping by reducing the noise complexity. Extensive results on the public datasets and real imaging scenarios collectively demonstrate the state-of-the-art performance of our method.

源语言英语
主期刊名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
出版商Association for Computing Machinery, Inc
1436-1444
页数9
ISBN(电子版)9781450392037
DOI
出版状态已出版 - 10 10月 2022
活动30th ACM International Conference on Multimedia, MM 2022 - Lisboa, 葡萄牙
期限: 10 10月 202214 10月 2022

出版系列

姓名MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia

会议

会议30th ACM International Conference on Multimedia, MM 2022
国家/地区葡萄牙
Lisboa
时期10/10/2214/10/22

指纹

探究 'Learnability Enhancement for Low-light Raw Denoising: Where Paired Real Data Meets Noise Modeling' 的科研主题。它们共同构成独一无二的指纹。

引用此