Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy

Hui Hui Zhu, Hao Sen Chen, Tian Chen*, Yuan Li, Shao Bo Luo, Muhammad Faeyz Karim, Xian Shu Luo, Feng Gao, Qiang Li, Hong Cai, Lip Ket Chin*, Leong Chuan Kwek*, Bengt Nordén*, Xiang Dong Zhang*, Ai Qun Liu*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Although molecular vibronic spectra generation is pivotal for chemical analysis, tackling such exponentially complex tasks on classical computers remains inefficient. Quantum simulation, though theoretically promising, faces technological challenges in experimentally extracting vibronic spectra for molecules with multiple modes. Here, we propose a nontrivial algorithm to generate the vibronic spectra using states with zero displacements (squeezed vacuum states) coupled to a linear optical network, offering ease of experimental implementation. We also fabricate an integrated quantum photonic microprocessor chip as a versatile simulation platform containing 16 modes of single-mode squeezed vacuum states and a fully programmable interferometer network. Molecular vibronic spectra of formic acid and thymine under the Condon approximation are simulated using the quantum microprocessor chip with high reconstructed fidelity (> 92%). Furthermore, vibronic spectra of naphthalene, phenanthrene, and benzene under the non-Condon approximation are also experimentally simulated. Such demonstrations could pave the way for solving complicated quantum chemistry problems involving vibronic spectra and computational tasks beyond the reach of classical computers.

源语言英语
文章编号6057
期刊Nature Communications
15
1
DOI
出版状态已出版 - 12月 2024

指纹

探究 'Large-scale photonic network with squeezed vacuum states for molecular vibronic spectroscopy' 的科研主题。它们共同构成独一无二的指纹。

引用此