L p -gradient estimates of symmetric Markov semigroups for 1 < p ≤ 2

Ana Bela Cruzeiro*, Xi Cheng Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

For 1 < p ≤ 2, an L p -gradient estimate for a symmetric Markov semigroup is derived in a general framework, i. e. ∥Gamma 1/2 (Tt f)∥p ≤ Cp/ √t∥f∥p, where Γ is a carré du champ operator. As a simple application we prove that Γ1/2((I-L) ) is a bounded operator from L p to L p provided that 1 < p < 2 and 1/2 < α < 1. For any 1 < p < 2, q > 2 and 1/2 < α < 1, there exist two positive constants c q,α,C p,α such that equation presented, where D is the Malliavin gradient ([2]) and L the Ornstein-Uhlenbeck operator.

源语言英语
页(从-至)101-104
页数4
期刊Acta Mathematica Sinica, English Series
22
1
DOI
出版状态已出版 - 1月 2006
已对外发布

指纹

探究 'L p -gradient estimates of symmetric Markov semigroups for 1 < p ≤ 2' 的科研主题。它们共同构成独一无二的指纹。

引用此