TY - GEN
T1 - Knowledge Transfer between Datasets for Learning-Based Tissue Microstructure Estimation
AU - Qin, Yu
AU - Li, Yuxing
AU - Liu, Zhiwen
AU - Ye, Chuyang
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/4
Y1 - 2020/4
N2 - Learning-based approaches, especially those based on deep networks, have enabled high-quality estimation of tissue microstructure from low-quality diffusion magnetic resonance imaging (dMRI) scans, which are acquired with a limited number of diffusion gradients and a relatively poor spatial resolution. These learning-based approaches to tissue microstructure estimation require acquisitions of training dMRI scans with high-quality diffusion signals, which are densely sampled in the q-space and have a high spatial resolution. However, the acquisition of training scans may not be available for all datasets. Therefore, we explore knowledge transfer between different dMRI datasets so that learning-based tissue microstructure estimation can be applied for datasets where training scans are not acquired. Specifically, for a target dataset of interest, where only low-quality diffusion signals are acquired without training scans, we exploit the information in a source dMRI dataset acquired with high-quality diffusion signals. We interpolate the diffusion signals in the source dataset in the q-space using a dictionary-based signal representation, so that the interpolated signals match the acquisition scheme of the target dataset. Then, the interpolated signals are used together with the high-quality tissue microstructure computed from the source dataset to train deep networks that perform tissue microstructure estimation for the target dataset. Experiments were performed on brain dMRI scans with low-quality diffusion signals, where the benefit of the proposed strategy is demonstrated.
AB - Learning-based approaches, especially those based on deep networks, have enabled high-quality estimation of tissue microstructure from low-quality diffusion magnetic resonance imaging (dMRI) scans, which are acquired with a limited number of diffusion gradients and a relatively poor spatial resolution. These learning-based approaches to tissue microstructure estimation require acquisitions of training dMRI scans with high-quality diffusion signals, which are densely sampled in the q-space and have a high spatial resolution. However, the acquisition of training scans may not be available for all datasets. Therefore, we explore knowledge transfer between different dMRI datasets so that learning-based tissue microstructure estimation can be applied for datasets where training scans are not acquired. Specifically, for a target dataset of interest, where only low-quality diffusion signals are acquired without training scans, we exploit the information in a source dMRI dataset acquired with high-quality diffusion signals. We interpolate the diffusion signals in the source dataset in the q-space using a dictionary-based signal representation, so that the interpolated signals match the acquisition scheme of the target dataset. Then, the interpolated signals are used together with the high-quality tissue microstructure computed from the source dataset to train deep networks that perform tissue microstructure estimation for the target dataset. Experiments were performed on brain dMRI scans with low-quality diffusion signals, where the benefit of the proposed strategy is demonstrated.
KW - deep network
KW - knowledge transfer
KW - tissue microstructure
UR - http://www.scopus.com/inward/record.url?scp=85085857499&partnerID=8YFLogxK
U2 - 10.1109/ISBI45749.2020.9098410
DO - 10.1109/ISBI45749.2020.9098410
M3 - Conference contribution
AN - SCOPUS:85085857499
T3 - Proceedings - International Symposium on Biomedical Imaging
SP - 1530
EP - 1533
BT - ISBI 2020 - 2020 IEEE International Symposium on Biomedical Imaging
PB - IEEE Computer Society
T2 - 17th IEEE International Symposium on Biomedical Imaging, ISBI 2020
Y2 - 3 April 2020 through 7 April 2020
ER -