TY - JOUR
T1 - Knowledge transfer between brain lesion segmentation tasks with increased model capacity
AU - Liu, Yanlin
AU - Cui, Wenhui
AU - Ha, Qing
AU - Xiong, Xiaoliang
AU - Zeng, Xiangzhu
AU - Ye, Chuyang
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2021/3
Y1 - 2021/3
N2 - Convolutional neural networks (CNNs) have become an increasingly popular tool for brain lesion segmentation in recent years due to its accuracy and efficiency. However, CNN-based brain lesion segmentation generally requires a large amount of annotated training data, which can be costly for medical imaging. In many scenarios, only a few annotations of brain lesions are available. One common strategy to address the issue of limited annotated data is to transfer knowledge from a different yet relevant source task, where training data is abundant, to the target task of interest. Typically, a model can be pretrained for the source task, and then fine-tuned with the scarce training data associated with the target task. However, classic fine-tuning tends to make small modifications to the pretrained model, which could hinder its adaptation to the target task. Fine-tuning with increased model capacity has been shown to alleviate this negative impact in image classification problems. In this work, we extend the strategy of fine-tuning with increased model capacity to the problem of brain lesion segmentation, and then develop an advanced version that is better suitable for segmentation problems. First, we propose a vanilla strategy of increasing the capacity, where, like in the classification problem, the width of the network is augmented during fine-tuning. Second, because unlike image classification, in segmentation problems each voxel is associated with a labeling result, we further develop a spatially adaptive augmentation strategy during fine-tuning. Specifically, in addition to the vanilla width augmentation, we incorporate a module that computes a spatial map of the contribution of the information given by width augmentation in the final segmentation. For demonstration, the proposed method was applied to ischemic stroke lesion segmentation, where a model pretrained for brain tumor segmentation was fine-tuned, and the experimental results indicate the benefit of our method.
AB - Convolutional neural networks (CNNs) have become an increasingly popular tool for brain lesion segmentation in recent years due to its accuracy and efficiency. However, CNN-based brain lesion segmentation generally requires a large amount of annotated training data, which can be costly for medical imaging. In many scenarios, only a few annotations of brain lesions are available. One common strategy to address the issue of limited annotated data is to transfer knowledge from a different yet relevant source task, where training data is abundant, to the target task of interest. Typically, a model can be pretrained for the source task, and then fine-tuned with the scarce training data associated with the target task. However, classic fine-tuning tends to make small modifications to the pretrained model, which could hinder its adaptation to the target task. Fine-tuning with increased model capacity has been shown to alleviate this negative impact in image classification problems. In this work, we extend the strategy of fine-tuning with increased model capacity to the problem of brain lesion segmentation, and then develop an advanced version that is better suitable for segmentation problems. First, we propose a vanilla strategy of increasing the capacity, where, like in the classification problem, the width of the network is augmented during fine-tuning. Second, because unlike image classification, in segmentation problems each voxel is associated with a labeling result, we further develop a spatially adaptive augmentation strategy during fine-tuning. Specifically, in addition to the vanilla width augmentation, we incorporate a module that computes a spatial map of the contribution of the information given by width augmentation in the final segmentation. For demonstration, the proposed method was applied to ischemic stroke lesion segmentation, where a model pretrained for brain tumor segmentation was fine-tuned, and the experimental results indicate the benefit of our method.
KW - Brain lesion segmentation
KW - Fine-tuning
KW - Increased model capacity
KW - Knowledge transfer
UR - http://www.scopus.com/inward/record.url?scp=85098563106&partnerID=8YFLogxK
U2 - 10.1016/j.compmedimag.2020.101842
DO - 10.1016/j.compmedimag.2020.101842
M3 - Article
C2 - 33387812
AN - SCOPUS:85098563106
SN - 0895-6111
VL - 88
JO - Computerized Medical Imaging and Graphics
JF - Computerized Medical Imaging and Graphics
M1 - 101842
ER -