Knowledge-based multimodal information fusion for role recognition and situation assessment by using mobile robot

Chule Yang, Danwei Wang, Yijie Zeng, Yufeng Yue*, Prarinya Siritanawan

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

24 引用 (Scopus)

摘要

Decision-making is the key for autonomous systems to achieve real intelligence and autonomy. This paper presents an integrated probabilistic decision framework for a robot to infer roles that humans fulfill in specific missions. The framework also enables the assessment of the situation and necessity of interaction with the person fulfilling the target role. The target role is the person who is distinctive in movement or holds a mission-critical object, where the object is pre-specified in the corresponding mission. The proposed framework associates prior knowledge with spatial relationships between the humans and objects as well as with their temporal changes. Distance-Based Inference (DBI) and Knowledge-Based Inference (KBI) support recognition of human roles. DBI deduces the role based on the relative distance between humans and the specified objects. KBI focuses on human actions and objects existence. The role is estimated using weighted fusion scheme based on the information entropy. The situation is assessed by analyzing the action of the person fulfilling the target role and relative position of this person to the mission-related entities, where the entity is something that has a particular function in the corresponding mission. This assessment determines the robot decision on what actions it should take. A series of experiments has proofed that the proposed framework provides a reasonable assessment of the situation. Moreover, it outperforms other approaches on accuracy, efficiency, and robustness.

源语言英语
页(从-至)126-138
页数13
期刊Information Fusion
50
DOI
出版状态已出版 - 10月 2019
已对外发布

指纹

探究 'Knowledge-based multimodal information fusion for role recognition and situation assessment by using mobile robot' 的科研主题。它们共同构成独一无二的指纹。

引用此