Kernel matrix approximation for parameters tuning of support vector regression

Lizhong Ding*, Shizhong Liao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Parameters tuning is fundamental for support vector regression (SVR). Previous tuning methods mainly adopted a nested two-layer optimization framework, where the inner one solved a standard SVR for fixed hyper-parameters and the outer one adjusted the hyper-parameters, which directly led to high computational complexity. To solve this problem, we propose a kernel matrix approximation algorithm KMA-α based on Monte Carlo and incomplete Cholesky factorization. The KMA-α approximates a given kernel matrix by a low-rank matrix, which will be used to feed SVR to improve its performance and further accelerate the whole parameters tuning process. Finally, on the basis of the computational complexity analysis of the KMA-α, we verify the performance improvement of parameters tuning attributed to the KMA-α on benchmark databases. Theoretical and experimental results show that the KMA-α is a valid and efficient kernel matrix approximation algorithm for parameters tuning of SVR.

源语言英语
主期刊名ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings
V11214-V11218
DOI
出版状态已出版 - 2010
已对外发布
活动2010 International Conference on Computer Application and System Modeling, ICCASM 2010 - Shanxi, Taiyuan, 中国
期限: 22 10月 201024 10月 2010

出版系列

姓名ICCASM 2010 - 2010 International Conference on Computer Application and System Modeling, Proceedings
11

会议

会议2010 International Conference on Computer Application and System Modeling, ICCASM 2010
国家/地区中国
Shanxi, Taiyuan
时期22/10/1024/10/10

指纹

探究 'Kernel matrix approximation for parameters tuning of support vector regression' 的科研主题。它们共同构成独一无二的指纹。

引用此