Joint view-identity manifold for target tracking and recognition

Jiulu Gong, Guoliang Fan*, Liangjiang Yu, Joseph P. Havlicek, Derong Chen

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

8 引用 (Scopus)

摘要

A new joint view-identity manifold (JVIM) is proposed for multiview shape modeling that is applied to automated target tracking and recognition (ATR). This work improves our recent work where the view and identity manifolds are assumed to be independent for multi-view multi-target modeling. A local linear Gaussian process latent variable model (LL-GPLVM) is used to learn a probabilistic JVIM which can capture both inter-class and intra-class variability of 2D target shapes under arbitrary view point jointly in one coexisted latent space. A particle filter-based ATR algorithm is developed to simultaneously infer the view and identity parameters along JVIM so that target tracking and recognition can be achieved jointly in a seamlessly fashion. The experimental results using SENSIAC ATR database demonstrate the advantages of our method both qualitatively and quantitatively compared with existing methods using template matching or separate view and identity manifolds.

源语言英语
主期刊名2012 IEEE International Conference on Image Processing, ICIP 2012 - Proceedings
1357-1360
页数4
DOI
出版状态已出版 - 2012
活动2012 19th IEEE International Conference on Image Processing, ICIP 2012 - Lake Buena Vista, FL, 美国
期限: 30 9月 20123 10月 2012

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议2012 19th IEEE International Conference on Image Processing, ICIP 2012
国家/地区美国
Lake Buena Vista, FL
时期30/09/123/10/12

指纹

探究 'Joint view-identity manifold for target tracking and recognition' 的科研主题。它们共同构成独一无二的指纹。

引用此