Joint Topology and Parameter Identification of Graphical ARMA Models

Junyao You, Chengpu Yu, Hao Fang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This paper focuses on the identification of graphical autoregressive moving-average (ARMA) models. Existing methods address the identification problem by estimating the graph topology, moving-average (MA) and autoregressive (AR) parameters in a separate way. To improve the identification efficiency, we design a two-stage identification algorithm, in which the AR and MA parameters are coupled together and can be estimated together with the graphical structure. Since a low-order ARMA model can be approximated by an AR model of appropriate high order, the identification object can be converted to the approximate graphical AR model, whose graph topology is identical to that of the primal graphical ARMA model. Based on l1-type nonsmooth regularized conditional maximum likelihood estimation and information theoretic model selection criterion, the simultaneous identification of the graphical structure and parameters of the approximate graphical AR model can be achieved. Then, the AR and MA parts of the primal graphical ARMA model are decoupled from the estimated parameters. Simulation results illustrate the effectiveness of the proposed algorithm.

源语言英语
主期刊名2022 IEEE 17th International Conference on Control and Automation, ICCA 2022
出版商IEEE Computer Society
678-683
页数6
ISBN(电子版)9781665495721
DOI
出版状态已出版 - 2022
活动17th IEEE International Conference on Control and Automation, ICCA 2022 - Naples, 意大利
期限: 27 6月 202230 6月 2022

出版系列

姓名IEEE International Conference on Control and Automation, ICCA
2022-June
ISSN(印刷版)1948-3449
ISSN(电子版)1948-3457

会议

会议17th IEEE International Conference on Control and Automation, ICCA 2022
国家/地区意大利
Naples
时期27/06/2230/06/22

指纹

探究 'Joint Topology and Parameter Identification of Graphical ARMA Models' 的科研主题。它们共同构成独一无二的指纹。

引用此