Iterative learning control for a distributed cloud robot with payload delivery

Jiehao Li, Shoukun Wang, Junzheng Wang*, Jing Li, Jiangbo Zhao, Liling Ma

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

34 引用 (Scopus)

摘要

Purpose: When it comes to the high accuracy autonomous motion of the mobile robot, it is challenging to effectively control the robot to follow the desired trajectory and transport the payload simultaneously, especially for the cloud robot system. In this paper, a flexible trajectory tracking control scheme is developed via iterative learning control to manage a distributed cloud robot (BIT-6NAZA) under the payload delivery scenarios. Design/methodology/approach: Considering the relationship of six-wheeled independent steering in the BIT-6NAZA robot, an iterative learning controller is implemented for reliable trajectory tracking with the payload transportation. Meanwhile, the stability analysis of the system ensures the effective convergence of the algorithm. Findings: Finally, to evaluate the developed method, some demonstrations, including the different motion models and tracking control, are presented both in simulation and experiment. It can achieve flexible tracking performance of the designed composite algorithm. Originality/value: This paper provides a feasible method for the trajectory tracking control in the cloud robot system and simultaneously promotes the robot application in practical engineering.

源语言英语
页(从-至)263-273
页数11
期刊Assembly Automation
41
3
DOI
出版状态已出版 - 2021

指纹

探究 'Iterative learning control for a distributed cloud robot with payload delivery' 的科研主题。它们共同构成独一无二的指纹。

引用此