TY - JOUR
T1 - Isothermal Amplification and Hypersensitive Fluorescence Dual-Enhancement Nucleic Acid Lateral Flow Assay for Rapid Detection of Acinetobacter baumannii and Its Drug Resistance
AU - Wang, Qian
AU - Zheng, Shuai
AU - Liu, Yong
AU - Wang, Chongwen
AU - Gu, Bing
AU - Zhang, Long
AU - Wang, Shu
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/10
Y1 - 2023/10
N2 - Acinetobacter baumannii (A. baumannii) is among the main pathogens that cause nosocomial infections. The ability to rapidly and accurately detect A. baumannii and its drug resistance is essential for blocking secondary infections and guiding treatments. In this study, we reported a nucleic acid fluorescent lateral flow assay (NFLFA) to identify A. baumannii and carbapenem-resistant A. baumannii (CRAB) in a rapid and quantitative manner by integrating loop-mediated isothermal amplification (LAMP) and silica–based multilayered quantum dot nanobead tag (Si@MQB). First, a rapid LAMP system was established and optimised to support the effective amplification of two bacterial genes in 35 min. Then, the antibody-modified Si@MQB was introduced to capture the two kinds of amplified DNA sequences and simultaneously detect them on two test lines of a LFA strip, which greatly improved the detection sensitivity and stability of the commonly used AuNP-based nucleic acid LFA. With these strategies, the established LAMP-NFLFA achieved detection limits of 199 CFU/mL and 287 CFU/mL for the RecA (house-keeping gene) and blaOXA-23 (drug resistance gene) genes, respectively, within 43 min. Furthermore, the assay exhibited good repeatability and specificity for detecting target pathogens in real complex specimens and environments; thus, the proposed assay undoubtedly provides a promising and low-cost tool for the on-site monitoring of nosocomial infections.
AB - Acinetobacter baumannii (A. baumannii) is among the main pathogens that cause nosocomial infections. The ability to rapidly and accurately detect A. baumannii and its drug resistance is essential for blocking secondary infections and guiding treatments. In this study, we reported a nucleic acid fluorescent lateral flow assay (NFLFA) to identify A. baumannii and carbapenem-resistant A. baumannii (CRAB) in a rapid and quantitative manner by integrating loop-mediated isothermal amplification (LAMP) and silica–based multilayered quantum dot nanobead tag (Si@MQB). First, a rapid LAMP system was established and optimised to support the effective amplification of two bacterial genes in 35 min. Then, the antibody-modified Si@MQB was introduced to capture the two kinds of amplified DNA sequences and simultaneously detect them on two test lines of a LFA strip, which greatly improved the detection sensitivity and stability of the commonly used AuNP-based nucleic acid LFA. With these strategies, the established LAMP-NFLFA achieved detection limits of 199 CFU/mL and 287 CFU/mL for the RecA (house-keeping gene) and blaOXA-23 (drug resistance gene) genes, respectively, within 43 min. Furthermore, the assay exhibited good repeatability and specificity for detecting target pathogens in real complex specimens and environments; thus, the proposed assay undoubtedly provides a promising and low-cost tool for the on-site monitoring of nosocomial infections.
KW - carbapenem-resistant A. baumannii
KW - loop-mediated isothermal amplification
KW - multilayered quantum dot nanobead tag
KW - nucleic acid fluorescent lateral flow assay
KW - simultaneous detection
UR - http://www.scopus.com/inward/record.url?scp=85175072643&partnerID=8YFLogxK
U2 - 10.3390/bios13100945
DO - 10.3390/bios13100945
M3 - Article
C2 - 37887138
AN - SCOPUS:85175072643
SN - 2079-6374
VL - 13
JO - Biosensors
JF - Biosensors
IS - 10
M1 - 945
ER -