TY - JOUR
T1 - IriTrack
T2 - Face Presentation Atack Detection Using Iris Tracking
AU - Shen, Meng
AU - Wei, Yaqian
AU - Liao, Zelin
AU - Zhu, Liehuang
N1 - Publisher Copyright:
© 2021 ACM.
PY - 2021/6
Y1 - 2021/6
N2 - With a growing adoption of face authentication systems in various application scenarios, face Presentation Attack Detection (PAD) has become of great importance to withstand artefacts. Existing methods of face PAD generally focus on designing intelligent classifiers or customized hardware to differentiate between the image or video samples of a real legitimate user and the imitated ones. Although effective, they can be resource-consuming and suffer from performance degradation due to environmental changes. In this paper, we propose IriTrack, which is a simple and efficient PAD system that takes iris movement as a significant evidence to identify face artefacts. More concretely, users are required to move their eyes along with a randomly generated poly-line, where the resulting trajectories of their irises are used as an evidence for PAD i.e., a presentation attack will be identified if the deviation of one's actual iris trajectory from the given poly-line exceeds a threshold. The threshold is carefully selected to balance the latency and accuracy of PAD. We have implemented a prototype and conducted extensive experiments to evaluate the performance of the proposed system. The results show that IriTrack can defend against artefacts with moderate time and memory overheads.
AB - With a growing adoption of face authentication systems in various application scenarios, face Presentation Attack Detection (PAD) has become of great importance to withstand artefacts. Existing methods of face PAD generally focus on designing intelligent classifiers or customized hardware to differentiate between the image or video samples of a real legitimate user and the imitated ones. Although effective, they can be resource-consuming and suffer from performance degradation due to environmental changes. In this paper, we propose IriTrack, which is a simple and efficient PAD system that takes iris movement as a significant evidence to identify face artefacts. More concretely, users are required to move their eyes along with a randomly generated poly-line, where the resulting trajectories of their irises are used as an evidence for PAD i.e., a presentation attack will be identified if the deviation of one's actual iris trajectory from the given poly-line exceeds a threshold. The threshold is carefully selected to balance the latency and accuracy of PAD. We have implemented a prototype and conducted extensive experiments to evaluate the performance of the proposed system. The results show that IriTrack can defend against artefacts with moderate time and memory overheads.
KW - Presentation attack detection
KW - authentication
KW - face recognition
KW - facial biometric artefact
KW - iris tracking
UR - http://www.scopus.com/inward/record.url?scp=85108892592&partnerID=8YFLogxK
U2 - 10.1145/3463515
DO - 10.1145/3463515
M3 - Article
AN - SCOPUS:85108892592
SN - 2474-9567
VL - 5
JO - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
JF - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
IS - 2
M1 - 3463515
ER -