IR saliency detection via a GCF-SB visual attention framework

Yufei Zhao, Yong Song*, Xu Li, Muhammad Sulaman, Zhengkun Guo, Xin Yang, Fengning Wang, Qun Hao

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

Infrared (IR) saliency detection with high detection accuracy is a challenging task due to the complex background and low contrast of IR images. In this paper, an IR saliency detection method via a new visual attention framework is proposed, which comprises two phases. In the first phase, a Gray & Contrast Features (GCF) model is established, in which the IR image is processed in two feature channels, a gray feature channel and a contrast feature channel. And then a primary feature map can be obtained by fusing the gray and contrast features from these two channels, which is the basis of the second phase. In the second phase, a Similarity-based Bayes (SB) model is established, in which two prior probabilities and two likelihood functions are calculated according to the previously obtained primary feature map. Finally, the saliency map is calculated with the obtained prior probabilities and likelihood functions by Bayes formula. Experimental results indicate that the proposed method can effectively reduce noise and enhance contrast of IR images with complex background and low contrast, and obtain a higher detection accuracy and robustness than seven state-of-the-art methods.

源语言英语
文章编号102706
期刊Journal of Visual Communication and Image Representation
66
DOI
出版状态已出版 - 1月 2020

指纹

探究 'IR saliency detection via a GCF-SB visual attention framework' 的科研主题。它们共同构成独一无二的指纹。

引用此