IoT Data Quality

Shaoxu Song, Aoqian Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

20 引用 (Scopus)

摘要

Data quality issues have been widely recognized in IoT data, and prevent the downstream applications. In this tutorial, we review the state-of-the-art techniques for IoT data quality management. In particular, we discuss how the dedicated approaches improve various data quality dimensions, including validity, completeness and consistency. Among others, we further highlight the recent advances by deep learning techniques for IoT data quality. Finally, we indicate the open problems in IoT data quality management, such as benchmark or interpretation of data quality issues.

源语言英语
主期刊名CIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management
出版商Association for Computing Machinery
3517-3518
页数2
ISBN(电子版)9781450368599
DOI
出版状态已出版 - 19 10月 2020
已对外发布
活动29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, 爱尔兰
期限: 19 10月 202023 10月 2020

出版系列

姓名International Conference on Information and Knowledge Management, Proceedings

会议

会议29th ACM International Conference on Information and Knowledge Management, CIKM 2020
国家/地区爱尔兰
Virtual, Online
时期19/10/2023/10/20

指纹

探究 'IoT Data Quality' 的科研主题。它们共同构成独一无二的指纹。

引用此