TY - JOUR
T1 - Investigation on the optimal design and flow mechanism of high pressure ratio impeller with machine learning method
AU - Yi, Weilin
AU - Cheng, Hongliang
N1 - Publisher Copyright:
Copyright © 2020 Weilin Yi and Hongliang Cheng.
PY - 2020
Y1 - 2020
N2 - The optimization of high-pressure ratio impeller with splitter blades is difficult because of large-scale design parameters, high time cost, and complex flow field. So few relative works are published. In this paper, an engineering-applied centrifugal impeller with ultrahigh pressure ratio 9 was selected as datum geometry. One kind of advanced optimization strategy including the parameterization of impeller with 41 parameters, high-quality CFD simulation, deep machine learning model based on SVR (Support Vector Machine), random forest, and multipoint genetic algorithm (MPGA) were set up based on the combination of commercial software and in-house python code. The optimization objective is to maximize the peak efficiency with the constraints of pressure-ratio at near stall point and choked mass flow. Results show that the peak efficiency increases by 1.24% and the overall performance is improved simultaneously. By comparing the details of the flow field, it is found that the weakening of the strength of shock wave, reduction of tip leakage flow rate near the leading edge, separation region near the root of leading edge, and more homogenous outlet flow distributions are the main reasons for performance improvement. It verified the reliability of the SVR-MPGA model for multiparameter optimization of high aerodynamic loading impeller and revealed the probable performance improvement pattern.
AB - The optimization of high-pressure ratio impeller with splitter blades is difficult because of large-scale design parameters, high time cost, and complex flow field. So few relative works are published. In this paper, an engineering-applied centrifugal impeller with ultrahigh pressure ratio 9 was selected as datum geometry. One kind of advanced optimization strategy including the parameterization of impeller with 41 parameters, high-quality CFD simulation, deep machine learning model based on SVR (Support Vector Machine), random forest, and multipoint genetic algorithm (MPGA) were set up based on the combination of commercial software and in-house python code. The optimization objective is to maximize the peak efficiency with the constraints of pressure-ratio at near stall point and choked mass flow. Results show that the peak efficiency increases by 1.24% and the overall performance is improved simultaneously. By comparing the details of the flow field, it is found that the weakening of the strength of shock wave, reduction of tip leakage flow rate near the leading edge, separation region near the root of leading edge, and more homogenous outlet flow distributions are the main reasons for performance improvement. It verified the reliability of the SVR-MPGA model for multiparameter optimization of high aerodynamic loading impeller and revealed the probable performance improvement pattern.
UR - http://www.scopus.com/inward/record.url?scp=85097586022&partnerID=8YFLogxK
U2 - 10.1155/2020/8855314
DO - 10.1155/2020/8855314
M3 - Article
AN - SCOPUS:85097586022
SN - 1687-5966
VL - 2020
JO - International Journal of Aerospace Engineering
JF - International Journal of Aerospace Engineering
M1 - 8855314
ER -