TY - JOUR
T1 - Investigation on the flow characteristics of a VNT turbine under pulsating flow conditions
AU - Qi, Mingxu
AU - Lei, Xinguo
AU - Wang, Zhen
AU - Ma, Chaochen
N1 - Publisher Copyright:
© IMechE 2017.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - The turbines used in turbochargers naturally experience unsteadiness caused by inlet pulsating flow conditions and stator–rotor interaction. The unsteadiness has an influence on turbine performance. Meanwhile, under certain small-nozzle opening conditions, strong shock waves can be generated. The synergistic effect of turbine inlet pulsation and shock waves has a significant influence on the turbine performance, rotor blade loading as well as the excitation force exerted on the turbine rotor, which is responsible for turbine rotor high cycle fatigue. In order to understand the influence of pulsating flows on turbine performance and the shock wave characteristic at nozzle trailing edge as well as the incidence angle characteristic of the rotor blade, unsteady numerical simulations were performed to investigate the effect of pulsating flow conditions on the performance, flow characteristics in frequency domain and shock wave behavior in a variable nozzle turbine. The results indicate that the turbine inlet pressure pulsation has strong influence on the turbine performances. Meanwhile, the turbine inlet pulsation flow has a strong influence on the intensity of the shock wave and clearance leakage flow in the nozzle, which causes significant flow losses in the turbine. In addition, at the turbine rotor inlet, the unsteadiness caused by the turbine inlet pulsation varies significantly along the circumferential direction and spanwise. Up to two-thirds of the unsteadiness caused by the turbine inlet pulsation dissipates before entering the rotor due to the flow dissipation and mixing process along the nozzle streamwise. The excitation force exerted on the rotor blade leading edge caused by the turbine inlet pulsation is about the same level as that caused by the stator–rotor interaction.
AB - The turbines used in turbochargers naturally experience unsteadiness caused by inlet pulsating flow conditions and stator–rotor interaction. The unsteadiness has an influence on turbine performance. Meanwhile, under certain small-nozzle opening conditions, strong shock waves can be generated. The synergistic effect of turbine inlet pulsation and shock waves has a significant influence on the turbine performance, rotor blade loading as well as the excitation force exerted on the turbine rotor, which is responsible for turbine rotor high cycle fatigue. In order to understand the influence of pulsating flows on turbine performance and the shock wave characteristic at nozzle trailing edge as well as the incidence angle characteristic of the rotor blade, unsteady numerical simulations were performed to investigate the effect of pulsating flow conditions on the performance, flow characteristics in frequency domain and shock wave behavior in a variable nozzle turbine. The results indicate that the turbine inlet pressure pulsation has strong influence on the turbine performances. Meanwhile, the turbine inlet pulsation flow has a strong influence on the intensity of the shock wave and clearance leakage flow in the nozzle, which causes significant flow losses in the turbine. In addition, at the turbine rotor inlet, the unsteadiness caused by the turbine inlet pulsation varies significantly along the circumferential direction and spanwise. Up to two-thirds of the unsteadiness caused by the turbine inlet pulsation dissipates before entering the rotor due to the flow dissipation and mixing process along the nozzle streamwise. The excitation force exerted on the rotor blade leading edge caused by the turbine inlet pulsation is about the same level as that caused by the stator–rotor interaction.
KW - Variable nozzle turbine
KW - frequency characteristic
KW - pulsating flow
KW - shock wave
KW - turbine performance
UR - http://www.scopus.com/inward/record.url?scp=85046019626&partnerID=8YFLogxK
U2 - 10.1177/0954407017744922
DO - 10.1177/0954407017744922
M3 - Article
AN - SCOPUS:85046019626
SN - 0954-4070
VL - 233
SP - 396
EP - 412
JO - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
IS - 2
ER -