TY - JOUR
T1 - Investigating the valence balance of adding Nano SiC and MWCNTs on the improvement properties of copper composite using mechanical alloying and SPS techniques
AU - Ahmadian, Hossein
AU - Fouly, Ahmed
AU - Zhou, Tianfeng
AU - Kumar, A. Senthil
AU - Fathy, A.
AU - Weijia, Guo
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5
Y1 - 2024/5
N2 - This study presents a comprehensive investigation of copper-based nanocomposites reinforced with silicon carbide (SiC) nanoparticles and multi-walled carbon nanotubes (MWCNTs). The manufacturing procedure involved powder metallurgy techniques followed by spark plasma sintering (SPS). Microstructural analysis revealed a notable reduction in particle size (from 23.72 μm to 18.31 μm) and crystallite size (from 104.32 nm to 87.36 nm) with the addition of reinforcements. The bulk microstructure exhibited a reduction in grain size by approximately 13.1 %. XRD analysis confirmed the absence of new phases. Evaluation of SPS parameters demonstrated varying density and porosity, with the highest relative density of 99.96 % observed in pure copper composites. Hardness measurements indicated that surface hardness surpassed cross-sectional values, with the lowest recorded value being 64.79 HV for composite Cu-5%SiC-1%MWCNTs (S4). Wear rate analysis revealed an increase, with pure copper composites exhibiting a wear rate of 1.78 × 10^-4 mm3/m, while composite S4 displayed a rate of 3.25 × 10^-4 mm3/m under a load of 5 N. Coefficient of Friction (COF) exhibited significant fluctuations, influenced by the applied load and composite composition. Thermal conductivity decreased with higher SiC and MWCNT content, with sample S1 exhibiting the highest thermal conductivity among reinforced composites. Electrical conductivity trends were influenced by the type and concentration of reinforcing particles, resulting in an increase of approximately six times in composite S4 compared to the pure sample.
AB - This study presents a comprehensive investigation of copper-based nanocomposites reinforced with silicon carbide (SiC) nanoparticles and multi-walled carbon nanotubes (MWCNTs). The manufacturing procedure involved powder metallurgy techniques followed by spark plasma sintering (SPS). Microstructural analysis revealed a notable reduction in particle size (from 23.72 μm to 18.31 μm) and crystallite size (from 104.32 nm to 87.36 nm) with the addition of reinforcements. The bulk microstructure exhibited a reduction in grain size by approximately 13.1 %. XRD analysis confirmed the absence of new phases. Evaluation of SPS parameters demonstrated varying density and porosity, with the highest relative density of 99.96 % observed in pure copper composites. Hardness measurements indicated that surface hardness surpassed cross-sectional values, with the lowest recorded value being 64.79 HV for composite Cu-5%SiC-1%MWCNTs (S4). Wear rate analysis revealed an increase, with pure copper composites exhibiting a wear rate of 1.78 × 10^-4 mm3/m, while composite S4 displayed a rate of 3.25 × 10^-4 mm3/m under a load of 5 N. Coefficient of Friction (COF) exhibited significant fluctuations, influenced by the applied load and composite composition. Thermal conductivity decreased with higher SiC and MWCNT content, with sample S1 exhibiting the highest thermal conductivity among reinforced composites. Electrical conductivity trends were influenced by the type and concentration of reinforcing particles, resulting in an increase of approximately six times in composite S4 compared to the pure sample.
KW - Copper-based composites
KW - Electrical conductivity
KW - Powder metallurgy
KW - Spark plasma sintering (SPS)
KW - Thermal conductivity
KW - Wear resistance
UR - http://www.scopus.com/inward/record.url?scp=85191662021&partnerID=8YFLogxK
U2 - 10.1016/j.diamond.2024.111113
DO - 10.1016/j.diamond.2024.111113
M3 - Article
AN - SCOPUS:85191662021
SN - 0925-9635
VL - 145
JO - Diamond and Related Materials
JF - Diamond and Related Materials
M1 - 111113
ER -