摘要
Controlling molecular chirality by external stimuli is of great significance in both fundamental research and technological applications. Herein, we report a high-temperature (384 K) molecular ferroelectric of a Cu(II) complex whose spontaneous polarization can be switched associated with flipping of molecular chirality. In this two-dimensional perovskite structure, the inorganic layer is separated by (NH3(CH2)2SS(CH2)2NH3)2+ organic cations skewed in a chiral conformation (P- or M-helicity in an individual crystal). As the stereodynamic disulfide bridge determines the molecular dipole moment along the polar axis, the chiral organic cation can be converted to its enantiomer as a consequence of an electric field-induced shift of the S-S moiety relative to its screw axis during the ferroelectric switching. The variation of the molecular chirality is examined with single-crystal X-ray diffraction and circular dichroism spectra. The simultaneous switching of molecular chirality and spontaneous polarization in this perovskite ferroelectric may lead to novel chiral electronic phenomena.
源语言 | 英语 |
---|---|
页(从-至) | 5545-5552 |
页数 | 8 |
期刊 | Journal of the American Chemical Society |
卷 | 145 |
期 | 9 |
DOI | |
出版状态 | 已出版 - 8 3月 2023 |