摘要
Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two limiting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and charge hopping due to localized polarons formed by strong e-ph interactions. However, between these two limiting cases there is a less well understood intermediate regime where polarons are present but transport does not occur via hopping. Here we show a many-body first-principles approach that can accurately predict the carrier mobility in this intermediate regime and shed light on its microscopic origin. Our approach combines a finite-temperature cumulant method to describe strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of 1.5−2 of experiment between 100 and 300 K. Our analysis reveals the formation of a broad polaron satellite peak in the electron spectral function and the failure of the Boltzmann equation in the intermediate regime.
源语言 | 英语 |
---|---|
文章编号 | 63 |
期刊 | npj Computational Materials |
卷 | 8 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 12月 2022 |
已对外发布 | 是 |