Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis

Fengmei Wang, Peng He, Yuanchang Li, Tofik Ahmed Shifa, Ya Deng, Kaili Liu, Qisheng Wang, Feng Wang, Yao Wen, Zhenxing Wang, Xueying Zhan, Lianfeng Sun, Jun He*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

146 引用 (Scopus)

摘要

For increasing scalability and reducing cost, transition metal dichalcogenides-based electrocatalysts presently have been proposed as substitutes for noble metals to generate hydrogen, but these alternatives usually suffer from inferior performance. Here, a Ravenala leaf-like WxC@WS2 heterostructure is grown via carbonizing WS2 nanotubes, whose outer walls being partially unzipped along with the Wx C “leaf-valves” attached to the inner tubes during the carbonization process. This heterostructure exhibits a catalytic activity for hydrogen evolution reaction with low overpotential of 146 mV at 10 mA cm−2 and Tafel slope of 61 mV per decade, outperforming the performance of WS2 nanotubes and WxC counterparts under the same condition. Density functional theory calculations are performed to unravel the underlying mechanism, revealing that the charge distribution between WxC and WS2 plays a key role for promoting H atom adsorption and desorption kinetics simultaneously. This work not only provides a potential low-cost alternative for hydrogen generation but should be taken as a guide to optimize the catalyst structure and composition.

源语言英语
文章编号1605802
期刊Advanced Functional Materials
27
7
DOI
出版状态已出版 - 17 2月 2017
已对外发布

指纹

探究 'Interface Engineered WxC@WS2 Nanostructure for Enhanced Hydrogen Evolution Catalysis' 的科研主题。它们共同构成独一无二的指纹。

引用此