TY - JOUR
T1 - Interactive Visual Reasoning under Uncertainty
AU - Xu, Manjie
AU - Jiang, Guangyuan
AU - Liang, Wei
AU - Zhang, Chi
AU - Zhu, Yixin
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - One of the fundamental cognitive abilities of humans is to quickly resolve uncertainty by generating hypotheses and testing them via active trials. Encountering a novel phenomenon accompanied by ambiguous cause-effect relationships, humans make hypotheses against data, conduct inferences from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. These iterative processes persist until the underlying mechanism becomes clear. In this work, we devise the IVRE (pronounced as ivory) environment for evaluating artificial agents' reasoning ability under uncertainty. IVRE is an interactive environment featuring rich scenarios centered around Blicket detection. Agents in IVRE are placed into environments with various ambiguous action-effect pairs and asked to determine each object's role. They are encouraged to propose effective and efficient experiments to validate their hypotheses based on observations and actively gather new information. The game ends when all uncertainties are resolved or the maximum number of trials is consumed. By evaluating modern artificial agents in IVRE, we notice a clear failure of today's learning methods compared to humans. Such inefficacy in interactive reasoning ability under uncertainty calls for future research in building human-like intelligence.
AB - One of the fundamental cognitive abilities of humans is to quickly resolve uncertainty by generating hypotheses and testing them via active trials. Encountering a novel phenomenon accompanied by ambiguous cause-effect relationships, humans make hypotheses against data, conduct inferences from observation, test their theory via experimentation, and correct the proposition if inconsistency arises. These iterative processes persist until the underlying mechanism becomes clear. In this work, we devise the IVRE (pronounced as ivory) environment for evaluating artificial agents' reasoning ability under uncertainty. IVRE is an interactive environment featuring rich scenarios centered around Blicket detection. Agents in IVRE are placed into environments with various ambiguous action-effect pairs and asked to determine each object's role. They are encouraged to propose effective and efficient experiments to validate their hypotheses based on observations and actively gather new information. The game ends when all uncertainties are resolved or the maximum number of trials is consumed. By evaluating modern artificial agents in IVRE, we notice a clear failure of today's learning methods compared to humans. Such inefficacy in interactive reasoning ability under uncertainty calls for future research in building human-like intelligence.
UR - http://www.scopus.com/inward/record.url?scp=85177892919&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85177892919
SN - 1049-5258
VL - 36
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -