INTERACTION MECHANISM OF COMPOSITE PROPELLANT COMPONENTS UNDER HEATING CONDITIONS

Jiahao Liang, Jianxin Nie*, Haijun Zhang, Xueyong Guo, Shi Yan, Ming Han

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

To examine the interactions between two binder systems—hydroxyl-terminated polybutadiene (HTPB) and hydroxyl-terminated block copolyether prepolymer (HTPE)—as well as between these binders and ammonium perchlorate (AP) at various temperatures for their susceptibility to varying degrees of thermal damage treatment, the thermal characteristics and combustion interactions of the HTPB and HTPE binder systems, HTPB/AP and HTPE/AP mixtures, and HTPB/AP/Al and HTPE/AP/Al propellants were studied. The results showed that the first and second weight loss decomposition peak temperatures of the HTPB binder were, respectively, 85.34 and 55.74 °C higher than the HTPE binder. The HTPE binder decomposed more easily than the HTPB binder. The microstructure showed that the HTPB binder became brittle and cracked when heated, while the HTPE binder liquefied when heated. The combustion characteristic index, S, and the difference between calculated and experimental mass damage, ΔW, indicated that the components interacted. The original S index of the HTPB/AP mixture was 3.34 × 10−8; S first decreased and then increased to 4.24 × 10−8 with the sampling temperature. Its combustion was initially mild, then intensified. The original S index of the HTPE/AP mixture was 3.78 × 10−8; S increased and then decreased to 2.78 × 10−8 with the increasing sampling temperature. Its combustion was initially rapid, then slowed. Under high-temperature conditions, the HTPB/AP/Al propellants combusted more intensely than the HTPE/AP/Al propellants, and its components interacted more strongly. A heated HTPE/AP mixture acted as a barrier, reducing the responsiveness of solid propellants.

源语言英语
主期刊名Interior Ballistics, Terminal Ballistics
编辑Frederik Coghe
出版商DEStech Publications
1353-1381
页数29
ISBN(电子版)9781605956923
出版状态已出版 - 2023
活动33rd International Symposium on Ballistics, BALLISTICS 2023 - Bruges, 比利时
期限: 16 10月 202320 10月 2023

出版系列

姓名Proceedings - 33rd International Symposium on Ballistics, BALLISTICS 2023
2

会议

会议33rd International Symposium on Ballistics, BALLISTICS 2023
国家/地区比利时
Bruges
时期16/10/2320/10/23

指纹

探究 'INTERACTION MECHANISM OF COMPOSITE PROPELLANT COMPONENTS UNDER HEATING CONDITIONS' 的科研主题。它们共同构成独一无二的指纹。

引用此