Instance-Aware and Semantic-Guided Prompt for Few-Shot Learning in Large Language Models

Jinta Weng, Donghao Li, Yifan Deng, Jie Zhang, Yue Hu*, Heyan Huang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

The effectiveness of large language models (LLMs) and instruction learning has been demonstrated in different pre-trained language models (such as ChatGPT). However, current prompt learning methods usually use a unified template for the same tasks, and the template is difficult to capture significant information from different instances. To integrate the semantic attention dynamically on the instance level, We propose ISPrompt, an instance-semantic-aware prompt learning model. Specifically, the instance-driven prompt generated from the semantic dependency tree is introduced. Then, the proposed model would select a suitable semantic prompt from the prompt selection pool to motivate the prompt-based fine-tuning process. Our results show that the proposed model achieves state-of-the-art performance on few-shot learning tasks, which proves that ISPrompt integrating the instance semantics dynamically could assume as a better knowledge-mining tool for PLMs.

源语言英语
主期刊名Neural Information Processing - 30th International Conference, ICONIP 2023, Proceedings
编辑Biao Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li, Chaojie Li
出版商Springer Science and Business Media Deutschland GmbH
55-67
页数13
ISBN(印刷版)9789819981472
DOI
出版状态已出版 - 2024
活动30th International Conference on Neural Information Processing, ICONIP 2023 - Changsha, 中国
期限: 20 11月 202323 11月 2023

出版系列

姓名Communications in Computer and Information Science
1966 CCIS
ISSN(印刷版)1865-0929
ISSN(电子版)1865-0937

会议

会议30th International Conference on Neural Information Processing, ICONIP 2023
国家/地区中国
Changsha
时期20/11/2323/11/23

指纹

探究 'Instance-Aware and Semantic-Guided Prompt for Few-Shot Learning in Large Language Models' 的科研主题。它们共同构成独一无二的指纹。

引用此