Insensitive energetic microspheres DAAF/RDX fabricated by facile molecular self-assembly

Shu jie Liu, Bi dong Wu*, Jia ni Xie, Zhi min Li, Chong wei An, Jing yu Wang*, Xiao dong Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

21 引用 (Scopus)

摘要

Insensitive energetic materials are promising in the defense weapons field. However, energetic materials still suffer from great challenges and the concern about their safety limits their utilization. In this work, insensitive energetic explosive 3,3′-diamino-4,4′-azoxyfurazan/hexahydro-1,3,5-trinitro-1,3,5-triazine (DAAF/RDX) microspheres were fabricated by self-assembly method. Rod-like DAAF/RDX was prepared by mechanical ball milling for comparison. DAAF/RDX composites with different mass ratios (90:10, 80:20, and 70:30) were obtained. The morphologies and structures of as-obtained DAAF/RDX composites were characterized by scanning electron microscopy (SEM), powder x-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FT-IR). The results showed that DAAF/RDX microspheres exhibited regular shaped microspheres with sizes from 0.5 to 1.2 μm. There was no crystal transition during the modification process. The thermal properties of as-obtained materials were then evaluated by differential scanning calorimetry (DSC) and materials studio software. DAAF/RDX microspheres showed an advanced decomposition peak temperature compared with rod-like DAAF/RDX. The binding energy and peak temperature values at zero βi (TP0) of DAAF/RDX (90:10) increased by 36.77 kJ/mol, 1.6 °C, and 58.11 kJ/mol, 12.3 °C compared to DAAF/RDX (80:20) and DAAF/RDX (70:30), indicating the better thermal stability of DAAF/RDX (90:10). The characteristic drop height (H50) of DAAF/RDX (higher than 100 cm) composites was higher than that of raw RDX (25 cm), suggesting significant improvements in mechanical safety. The preparation of DAAF/RDX microspheres is promising for the desensitization of RDX and useful for the formation of other materials and future wide applications.

源语言英语
页(从-至)1775-1781
页数7
期刊Defence Technology
17
5
DOI
出版状态已出版 - 10月 2021

指纹

探究 'Insensitive energetic microspheres DAAF/RDX fabricated by facile molecular self-assembly' 的科研主题。它们共同构成独一无二的指纹。

引用此