Infrared Target Detection Using Intensity Saliency and Self-Attention

Ruiheng Zhang, Min Xu, Yaxin Shi, Jian Fan, Chengpo Mu, Lixin Xu

科研成果: 书/报告/会议事项章节会议稿件同行评审

4 引用 (Scopus)

摘要

Infrared target detection is essential for many computer vision tasks. Generally, the IR images present common infrared characteristics, such as poor texture information, low resolution, and high noise. However, these characteristics are ignored in the existing detection methods, making them fail in real-world scenarios. In this paper, we take infrared intensity into account and propose a novel backbone network named Deep-IRTarget. We first extract infrared intensity saliency by a convolution with a Gaussian kernel filtering the images in the frequency domain. We then propose the triple self-attention network to further extract spatial domain image saliency by selectively emphasize interdependent semantic features in each channel. Jointly exploiting infrared characteristics in the frequency domain and the overall semantic interdependencies in the spatial domain, the proposed Deep-IRTarget outperforms existing methods in real-world Infrared target detection tasks. Experimental results on two infrared imagery datasets demonstrate the superiorly of our model.

源语言英语
主期刊名2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings
出版商IEEE Computer Society
1991-1995
页数5
ISBN(电子版)9781728163956
DOI
出版状态已出版 - 10月 2020
活动2020 IEEE International Conference on Image Processing, ICIP 2020 - Virtual, Abu Dhabi, 阿拉伯联合酋长国
期限: 25 9月 202028 9月 2020

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
2020-October
ISSN(印刷版)1522-4880

会议

会议2020 IEEE International Conference on Image Processing, ICIP 2020
国家/地区阿拉伯联合酋长国
Virtual, Abu Dhabi
时期25/09/2028/09/20

指纹

探究 'Infrared Target Detection Using Intensity Saliency and Self-Attention' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhang, R., Xu, M., Shi, Y., Fan, J., Mu, C., & Xu, L. (2020). Infrared Target Detection Using Intensity Saliency and Self-Attention. 在 2020 IEEE International Conference on Image Processing, ICIP 2020 - Proceedings (页码 1991-1995). 文章 9191055 (Proceedings - International Conference on Image Processing, ICIP; 卷 2020-October). IEEE Computer Society. https://doi.org/10.1109/ICIP40778.2020.9191055