Information-theoretic joint probabilistic data association filter

Shaoming He, Hyo Sang Shin*, Antonios Tsourdos

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

16 引用 (Scopus)

摘要

This article proposes a novel information-theoretic joint probabilistic data association filter for tracking unknown number of targets. The proposed information-theoretic joint probabilistic data association algorithm is obtained by the minimization of a weighted reverse Kullback-Leibler divergence to approximate the posterior Gaussian mixture probability density function. Theoretical analysis of mean performance and error covariance performance with ideal detection probability is presented to provide insights of the proposed approach. Extensive empirical simulations are undertaken to validate the performance of the proposed multitarget tracking algorithm.

源语言英语
文章编号9102999
页(从-至)1262-1269
页数8
期刊IEEE Transactions on Automatic Control
66
3
DOI
出版状态已出版 - 3月 2021
已对外发布

指纹

探究 'Information-theoretic joint probabilistic data association filter' 的科研主题。它们共同构成独一无二的指纹。

引用此